CTF101 -
Cryptanalysis

SecTalks SYDOxOf

19 April 2016

#'/whoami

Pedram Hayati

» PhD (ComSci), Bsc (IT eng.)

* Partnher at (= elttam

= Launched SecTalks non-profit meetups

Cryptography

Why this workshop?

= There are many workshops and courses on cryptography.

= |n Cryptanalysis world, the scenario is:
= Here is the ciphertext
= Here is the crypto algorithm
= Here is the plaintext
= Find a way to break it

" |n CTF, this is not the case:

= FVBIJHUIYLHRIVKLHUKFVBHYLWYVBKVMPA
= Title: | rule, Category: Crypto, Points: 50
= What is the flag?!

= So our focus in this workshop is to teach you how to approach
CTF crypto challenges.

It is not a day workshop

= Cryptography is a massive topic
= Need a lot of time to understand

» Good news: there are a lot of (free) resources from both
industry and academic on learning cryptography

= \We are going to focus on a tiny bit of cryptography and
learn about:
1. Crypto fundamentals
2. Common Crypto Ciphers
3. Cryptanalyses
4. Breaking the crypto code using Python

Crypto fundamentals

Have you done your homework?

= Resources from last workshop
= 9 minutes video on cryptography 101 (by Prof. D. Brumley)
= [ntroduction to Cryptography (by picoctf.com)
= Ciphers and tools to test (from cryptool-online.org)
= Cryptography step-by-step exercises (from Matasano)

https://vimeo.com/64772247
https://picoctf.com/crypto_mats/
http://www.cryptool-online.org/index.php?option=com_cto&view=tool&Itemid=150&lang=en
http://cryptopals.com/

Common ciphers

» Caesar
= Monoalphabetic cipher
» Key is a k between 1 and 25 (inclusive).

» Replace each symbol of the plaintext with a symbol of
ciphertext using a single new alphabet.

Cryptanalysis

Cryptanalysis

= Analyse a cryptographic system.
» Understand cryptographic system.

= Break the system with or without knowing the key.
= Common methods

Brute-force search

= Try every possible combination of characters or data to
find the key

= Works for some CTFs when the keyspace is small
= T00% guarantee of success at expense of time

Dictionary attack

= Use a dictionary of common and likely combinations

= More efficient that BF but no guarantee on finding the
key

Frequency analysis

0.14

* |n a plaintext, each character
012 - occurs with a characteristic
frequency.

= The characteristics frequency of
the plaintext may appear in the
ciphertext.

= Analyse letters or group of
letters

= English most common
(Mmonograms)

» E, T, A O, N (Etaion)

L = English least common
etaoinshrdlcumwigyphbvek])xag:z (mOﬂogramS)

= Z,Q, X

0.1

0.08

0.06

0.04

0.02

0

Breaking crypto

Brute-force: Caesar cipher

FVBIHUIYLHRIVKLHUKFVBHYLWYVBKVMPA
Filename: brute-force-caesar-cipher.txt

1. Try every possible decryption key
2. Print output (sample output below)

Key #0: GUVF VF ZL FRPERG ZRFFNTR.

Key #1: FTUE UE YK EQODQF YQEEMSOQ.
Key #2: ESTD TD XJ DPNCPE XPDDLRP.

How | Python?

Brute-force: Caesar cipher

cipher =

LETTERS =

Brute-force: Caesar cipher

cipher =
LETTERS =

for key in range(lenCLETTERS) D :
plaintext =

Brute-force: Caesar cipher

cipher =
LETTERS =

for key in range(len(LETTERS)) :
plaintext =

for symbol in cipher:
if symbol in LETTERS:
position = LETTERS. index(symbol)
position = position - key

Brute-force: Caesar cipher

cipher =
LETTERS =

for key in range(lentLETTERSY):
plaintext =

for symbol in cipher:
if symbol in LETTERS:
position = LETTERS. index({=symbal)
position = position - k

plaintext = plaintext + LETTERS[positionl

= plaintext + symbol

print(tHy: {1} . format(key, plaintextl)

Brute-force: Caesar cipher

cipher =
LETTERS =

for key in rangellenCLETTERSY):
plaintext =

for symbol in cipher:
it symbol in LETTERS:
position = LETTERS. index{symboll

position = position - key

if position < H:
position = position + len(LETTERS)

plaintext = plaintext + LETTERS[position]

plaintext = plaintext + symbol

print({8 {1} . formatikey, plaintextl)

Create your CTF Toolbox

CTF Toolbox

= A collection of scripts,
libraries and other utilities

» Quick prototyping or
solving different parts of a
challenge

= Add more tools over the
time as you do more CTFs

= Most challenges are either
being repeated or very
similar.

Frequency analysis: Caesar cipher

FRPGNYXF ZRRGHCF NER NOBHG CNEGVPVCNGVAT VA
VG FRPHEVGL QVFPHFFVBAF, YRNEAVAT SEBZ BGUREF,
NAQ VZCEBIVAT CEBOYRZ-FBYIVAT FXVYYF. FRPGNYXF
BSSREF NA NIRAHR JURER LBH PNA GRNZ-HC JvGU
YVXRZVAQRQ CRBCYR GB CNEGVPVCNGR VA FBYIVAT
GRPUAVPNY VG FRPHEVGL PUNYYRATRF

Filename: frequency-analysis-caesar-cipher.txt

Frequency analysis: Caesar cipher

Write a Python method to count the frequency of each
cipher letter

1. Given a string, breaks it to its characters
2. Setletter=F count=0

3. Loop over all characters and if letter = F then count + 1
4. Print count

5. Remove letter from the string

6

If not end of string, set letter = next character in the string,
count =0 and go to 3.

Frequency analysis: Caesar cipher

t

—

m

—+ M

if le
1

m
—_
]
m

return

Frequency analysis: Caesar cipher

Code a method to return most frequent letter

def get_most_frequent_letterim

most_fregq_walue =
most_freg_index = G

o
.
m

for letter in messai
if mezzaqw[lw++ most_freg_wvalue:
most_freg_u messagelletter]
most_freg_ 1ndE letter
return most_freg_index, most_freg_walue

|'|:| T
|'|:|

|_|_|
—_ |
l_ | -
m

Frequency analysis: Caesar cipher

=» The key is the number of shift between letter ‘E’ and the
most frequent letter in the cipher.

= Write a code to generate this key.
= Be watchful of all possible scenarios.

Frequency analysis: Caesar cipher

e_position = LETTERS. index(J
m_position = LETTERS. indeximost_frequent_letter[H])
key = m_position - e_positian

it key < M
key 3 lentLETTERS)
printikey)

Frequency analysis: Caesar cipher

= Now, same as the second loop in bruteforce code, loop
through all symbols and decrypt the cipher.

for symbol in cipher:

position = LETTERS. index(symbol)
position = position - key
if position < B:
position = position + lenCLETTERS)
plaintext = plaintext + LETTERS[position]

plaintext = plaintext + symbol

rintiplaintext)

* Human language carries also frequent 2 letters, 3 letters
word. For example in English:
= Top bigrams: TH, HE, IN, ER, AN
» Top trigrams: THE, AND, ING, ENT

= Similar to frequency analysis of monograms, counting the
frequency of bigrams (2 consecutive characters), trigrams
(3 consecutive characters, etc. helps to understands the
ciphertext and find clues to break it.

= More information

= http://practicalcryptography.com/cryptanalysis/letter-
frequencies-various-languages/english-letter-frequencies/

http://practicalcryptography.com/cryptanalysis/letter-frequencies-various-languages/english-letter-frequencies/

Frequency analysis: ngrams

= Write a new Python method to:
1. Get an input string and the size of ngram (e.g. 2, 3, etc.)

2. Count ngrams of the input string for all the ngrams
smaller or equal to the given ngram size

3. Sort and print the output from top most frequent
ngram to least.

Note: Write your own method and do not use NLTK/NLP
libs.

Homework

1. Write a code that generates Caesar cipher for all
possible keys. Test the output of your program in brute-
force program.

2. Write a better frequency analysis scripting by using
“frequency match score” algorithm.

Next

What will be covered in the next workshop

Copyright CC BY-NC-SA 4.0

34

Coming up

Modern cryptanalysis

» Modern cryptography
= Single-byte XOR
= Multi-byte XOR

= Breaking the crypto code using Python
= Some crypto challenges

That’s all for now

Feel free to get in touch if you have any question:

pidch@irc.sectalks.org #sectalks
pedram@elttam.com.au

mailto:pedram@elttam.com.au

References

1. Modern Cryptanalysis: Techniques for Advanced Code
Breaking

2. Understanding Cryptology: Cryptanalysis, Dr. Kerry
McKay, OpenSecurityTraining.info

3. https:/Mmww.khanacademy.org/computing/computer-
science/cryptography

4. https://inventwithpython.com/hacking/chapter7.nhtml
https://picoctf.com/crypto _mats/
6. http://practicalcryptography.com/cryptanalysis/

Ul

https://inventwithpython.com/hacking/chapter7.html
https://inventwithpython.com/hacking/chapter7.html
https://picoctf.com/crypto_mats/
http://practicalcryptography.com/cryptanalysis/

Copyright

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Visit: https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright CC BY-NC-SA 4.0 38

https://creativecommons.org/licenses/by-nc-sa/4.0/

